Intro to Julia: Filtering Rows with R, Python, and Julia

In one of my earlier posts I introduced the Julia programming language by comparing how you can read and write CSV files in R, Python, and Julia. In this post I’d like to build on that comparison by describing how you can filter for specific rows in a data set in each language based on a filtering condition, set of interest, and pattern (i.e. regular expression). We’ll be using the same wine quality data set we used in the earlier post, which is available here: wine quality

We’ll use the same three row filters in all of the examples so it’s easy to confirm that the output is consistent across all three languages:

  1. The first row filter specifies a condition that restricts the output to rows where the value in the quality column is greater than 7.
  2. The second row filter specifies a set of interest that restricts the output to rows where the value in the quality column is either 7 or 8.
  3. The third row filter specifies a pattern that restricts the output to rows where the value in the quality column contains an 8.

R

To begin, let’s see how you can filter for specific rows in R. First we’ll cover how to filter for rows with base R, and then we’ll describe how to accomplish the same task with the data.table and dplyr packages, which are popular packages for managing data in R.

Base R

The following script illustrates how to read data into a data frame, filter for specific rows based on a filter condition, set of interest, and pattern, and write the output of interest to an output file. All three filtering sections show two different ways to filter the rows, first using row indexing and then using the subset function.

Copy and paste the following code into a text file and then save the file as filter_rows.R

#!/usr/bin/env Rscript
# For more information, visit: https://cbrownley.wordpress.com/

#Collect the command line arguments into a variable called args
args <- commandArgs(trailingOnly = TRUE)
# Assign the first command line argument to a variable called input_file
input_file <- args[1]
# Assign the second command line argument to a variable called output_file
output_file <- args[2]

# Use R’s read.csv function to read the data into a variable called wine
# read.csv expects a CSV file with a header row, so
# sep = ',' and header = TRUE are default values
# stringsAsFactors = FALSE means don’t convert character vectors into factors
wine <- read.csv(input_file, sep = ',', header = TRUE, stringsAsFactors = FALSE)

# Row Value Meets Specific Condition
wine_condition <- wine[which(wine$quality > 7), ]
# Using subset function
wine_condition <- subset(wine, quality > 7)
#print(wine_condition)

# Row Value In Set of Interest
set_of_interest <- c(7, 8)
wine_set <- wine[which(wine$quality %in% set_of_interest), ]
# Using subset function
wine_set <- subset(wine, quality %in% set_of_interest)
#print(wine_set)

# Row Value Matches Specific Pattern
pattern <- '^8$'
wine_pattern <- wine[grep(pattern, wine$quality, ignore.case=TRUE, perl=TRUE), ]
# Using subset function
#wine_pattern <- subset(wine, quality==pattern)
print(wine_pattern)

# Use R’s write.csv function to write the data in the variable wine to the output file
write.csv(wine_pattern, file = output_file, row.names = FALSE)

The section that filters for rows based on a condition only includes one condition, i.e. wine$quality > 7, but you can add more conditions with ANDs, &, and ORs, |. For example, to filter for rows where quality > 7 AND alcohol > 13.0 you can use:
wine_condition <- wine[which(wine$quality > 7 & wine$alcohol > 13.0), ]

Similarly, to filter for rows where quality < 4 OR alcohol > 13.0 you can use:
wine_condition <- wine[which(wine$quality < 4 | wine$alcohol > 13.0), ]

If instead you want to exclude a selection of rows you can negate the which function with a dash, -, like this:
wine_condition <- wine[-which(wine$quality > 7), ]

The section that filters for rows based on a set of interest uses the which function and the %in% binary operator to select rows where the value in the quality column is one of the two values in the set of interest. It’s convenient to assign the values of interest to a variable and then use the variable in the filtering condition so that if the values of interest change you only have to make one change where the values are assigned to the variable.

The section that filters for rows based on a pattern uses the Unix-inspired grep command to select rows where the pattern appears somewhere in the value in the quality column. The ^ metacharacter indicates that the 8 appears at the beginning of the value and the $ metacharacter indicates that the 8 appears at the end of the value, so enclosing the 8 between both ensures that grep looks for rows where 8 is the only value in the quality column. The ignore.case argument isn’t necessary in this case since we’re looking for number, but I included it to show you that it’s available and where to put it if you need it. Similarly, the ^ and $ metacharacters and perl argument aren’t necessary either since we’re searching for a simple number, but I included them to demonstrate how you can use a regular expression and the perl argument to search for a specific pattern.

Now run the following two commands in a Terminal window to make the script executable and to run the script:

chmod +x filter_rows.R
./filter_rows.R winequality-red.csv output/output_R.csv

When you run these commands you’ll see the following output printed to your Terminal screen. In addition, the set of rows matching the pattern in the final filtering section have been written to a CSV file in the output folder inside your current folder.

Base R

R package: data.table

Now that we know how to filter for specific rows in base R, let’s discuss how to filter for rows with the data.table package. The following script illustrates how to do so. Copy and paste the following code into a text file and then save the file as filter_rows_data_table.R

#!/usr/bin/env Rscript
require(data.table)

args <- commandArgs(trailingOnly = TRUE)
input_file <- args[1]
output_file <- args[2]

wine <- fread(input_file)

# Row Value Meets Specific Condition
wine_condition <- wine[quality > 7]

# Row Value In Set of Interest
set_of_interest <- c(7, 8)
wine_set <- wine[quality %in% set_of_interest]

# Row Value Matches Specific Pattern
pattern <- '8'
wine_pattern <- wine[quality==pattern]
print(wine_pattern)

write.csv(wine_pattern, file = output_file, row.names = FALSE)

The filtering syntax is very similar to the syntax we used in the base R versions, so you can look in the base R section above for some explanations about the syntax. Now make the script executable and then run the script:

chmod +x filter_rows_data_table.R
./filter_rows_data_table.R winequality-red.csv output/output_R_data_table.csv

When you run these commands you’ll see the same output as you saw with base R printed to your Terminal screen and you’ll have written another CSV file in the output folder.

R package: dplyr

Now let’s see how to filter for rows with the dplyr package. Copy and paste the following code into a text file and then save the file as filter_rows_dplyr.R

#!/usr/bin/env Rscript
require(data.table)
require(dplyr)

args <- commandArgs(trailingOnly = TRUE)
input_file <- args[1]
output_file <- args[2]

wine <- fread(input_file)
wine <- tbl_df(wine)

# Row Value Meets Specific Condition
wine_condition <- wine %>% filter(quality > 7)

# Row Value In Set of Interest
set_of_interest <- c(7, 8)
wine_set <- wine %>% filter(quality %in% set_of_interest)

# Row Value Matches Specific Pattern
pattern <- '8'
wine_pattern <- wine %>% filter(quality==pattern)
print(wine_pattern)

write.csv(wine_pattern, file = output_file, row.names = FALSE)

All three filtering sections use the %>% operator, pulled into dplyr from the magrittr package, and dplyr’s own filter function. The %>% operator is pronounced, “then”, as in “do this, then, do that”. It takes the result of the operation on the left-hand-side of the operator and passes it as the first argument to the operation on the right-hand-side of the operator.

In all three filtering sections we’re simply using it to pass the data set into the filter function. Chaining these two operations doesn’t gain us much – it’s simply to demonstrate how you can use the %>% operator to chain operations together to make your code easier to read and understand. As you’d guess, the filter function filters for rows in the data set with a value that meets the filtering criterion or criteria. Now make the script executable and then run the script:

chmod +x filter_rows_dplyr.R
./filter_rows_dplyr.R winequality-red.csv output/output_R_dplyr.csv

As before, when you run these commands you’ll see the same output as you saw with base R and the data.table package printed to your Terminal screen and you will have written another CSV file in the output folder.

PYTHON

Now that we know how to filter for specific rows in R, let’s discuss how to filter for rows in Python. First we’ll cover how to filter for rows with base Python, and then we’ll describe how to accomplish the same tasks with Pandas, which is a popular package for managing data in Python.

Base Python

The following script illustrates how to process a CSV file line by line, filter for specific rows based on a filter condition, set of interest, and pattern, and write the results to an output file.

Copy and paste the following code into a text file and then save the file as filter_rows.py

#!/usr/bin/env python
# For more information, visit: https://cbrownley.wordpress.com/
# Import Python's built-in csv and sys modules, which have functions
# for processing CSV files and command line arguments, respectively
import csv
import re
import sys

# Assign the first command line argument to a variable called input_file
input_file = sys.argv[1]
# Assign the second command line argument to a variable called output_file
output_file = sys.argv[2]

header_row = True

# Open the input file for reading and close automatically at end
with open(input_file, 'rU') as csv_in_file:
    # Open the output file for writing and close automatically at end
    with open(output_file, 'wb') as csv_out_file:
        # Create a file reader object for reading all of the input data
        filereader = csv.reader(csv_in_file)
        # Create a file writer object for writing to the output file
        filewriter = csv.writer(csv_out_file)
        # Use a for loop to process the rows in the input file one-by-one
        for row in filereader:
            # Process the header row separately from the data rows
            # Print it to the screen, write it to the output file, and then
            # indicate that you're finished with the header row
            if header_row == True:
                print row
                filewriter.writerow(row)
                header_row = False
            # Process the data rows according to three filtering conditions
            else:
                # Row Value Meets Specific Condition
                #if int(row[11]) > 7:
                    #print row
                    #filewriter.writerow(row)

                # Row Value In Set of Interest
                #set_of_interest = [7, 8]
                #if int(row[11]) in set_of_interest:
                    #print row
                    #filewriter.writerow(row)

                # Row Value Matches Specific Pattern
                pattern = re.compile(r'(?P<my_pattern>8)', re.I)
                result = pattern.search(row[11])
                if result == None:
                    pass
                else:
                    print row
                    filewriter.writerow(row)

We process the header row separately from the data rows because we don’t want to test the header row against the filtering conditions. The built-in csv module reads each row from the input file as a list, a.k.a. array, so we use list indexing, row[11], to access the values in the quality column, which is the twelfth column in the data set (in Python, the first array index is 0). The first two filtering sections are fairly straightforward, i.e. in the first section, the integer version of the value in the quality column is > 7 and in the second section it is one of the values in the set of interest. These two sections are currently commented out with # symbols, but you can uncomment the sections one-at-a-time to see how the output changes.

The third section uses the re module to create a regular expression, search for the pattern in the quality column, and print and write the row when the value in the quality column matches the pattern. The re.I argument makes the pattern case-insensitive. As we said in the R section, we don’t need the argument in this case but it’s helpful to know where to include it if you need it. Now make the script executable and then run the script:

chmod +x filter_rows.py
./filter_rows.py winequality-red.csv output/output_Python.csv

When you run these commands you’ll see the following output printed to your Terminal screen. In addition, the header row and the set of rows matching the pattern in the final filtering section have been written to a CSV file in the output folder.

Base Python

Python package: Pandas

Now let’s see how to filter for rows with Pandas. Copy and paste the following code into a text file and then save the file as filter_rows_pandas.py

#!/usr/bin/env python
import sys
import string
import pandas as pd

input_file = sys.argv[1]
output_file = sys.argv[2]

data_frame = pd.read_csv(input_file)

# Row Value Meets Specific Condition
data_frame_value_meets_condition = data_frame[data_frame['quality'].astype(int) > 7]

# Row Value In Set of Interest
set_of_interest = [7, 8]
data_frame_value_in_set = data_frame[data_frame['quality'].isin(set_of_interest)]

# Row Value Matches Specific Pattern
data_frame_value_matches_pattern = data_frame[data_frame['quality'].astype(str).str.contains("8")]
print(data_frame_value_matches_pattern)

data_frame_value_matches_pattern.to_csv(output_file, index=False)

In the first filtering section we select the quality column, convert the values into integers, and then test whether they’re greater than 7. In the second section we use the isin function to test whether the value in the quality column is one of the values in the set of interest. Finally, in the third section, we use the contains function to test whether the value in the quality column contains 8. There are also startswith and endswith functions in case you need to test whether the value starts with or ends with a specific pattern.

Pandas also has a convenient .ix function that you can use to filter for specific rows and columns at the same time. Here’s how you could modify the first filtering section to use the .ix function: data_frame_value_meets_condition = data_frame.ix[data_frame.quality.astype(int) > 7, :]

You can select the column by typing data_frame.column. Like R, you need to separate the rows and columns sections with a comma, and you use a colon to indicate that you want to select all of the rows or columns (In this case we want to select all of the columns). Now run the following two commands to make the script executable and to run the script:

chmod +x filter_rows_pandas.py
./filter_rows_pandas.py winequality-red.csv output/output_Python_Pandas.csv

When you run these commands you’ll see similar output as you saw with base Python printed to your Terminal screen, although it will be formatted differently. In addition, the header row and the set of rows matching the pattern in the final filtering section have been written to a CSV file in the output folder.

JULIA

Now that we know how to filter for specific rows in Python, let’s discuss how to filter for rows in Julia. First we’ll cover how to filter for rows with base Julia, and then we’ll describe how to accomplish the same tasks with DataFrames, which is a popular package for managing data in Julia.

Base Julia

The following script illustrates how to read a CSV file line by line, filter for specific rows based on a filter condition, set of interest, and pattern, and write the output of interest to an output file.

Copy and paste this code into a text file and then save the file as filter_rows.jl

#!/usr/bin/env julia
# For more information, visit: https://cbrownley.wordpress.com/

# Assign the first command line argument to a variable called input_file
input_file = ARGS[1]
# Assign the second command line argument to a variable called output_file
output_file = ARGS[2]

# Open the output file for writing
out_file = open(output_file, "w")

header_row = true
# Open the input file for reading and close automatically at end
open(input_file, "r") do in_file
    # Use a for loop to process the rows in the input file one-by-one
    for row in eachline(in_file)
        if header_row == true
            print(row)
            write(out_file, row)
            global header_row = false
        else
            row_array = map(float, split(strip(row), ","))
            #println(row_array)

            # Row Value Meets Specific Condition
            if row_array[12] > 7.0
                #print(join(row_array, ",") * "\n")
                #write(out_file, join(row_array, ",") * "\n")
            end

            # Row Value In Set of Interest
            set_of_interest = Set(7.0, 8.0)
            if in(row_array[12], set_of_interest)
                #print(join(row_array, ",") * "\n")
                #write(out_file, join(row_array, ",") * "\n")
            end

            # Row Value Matches Specific Pattern
            pattern = r"8$"
            if ismatch(pattern, row)
                print(row)
                write(out_file, row)
            end

        # Close the if-else statement
        end
    # Close the for loop
    end
# Close the input file handle
end
# Close the output file handle
#close(out_file)

Let’s explain some of the syntax in this script that’s different from R and Python. For example, the open(…) do statement creates an anonymous function with its own scope, so when we initially define the variable header_row above the open(…) do statement and then assign a new value to the variable inside the open(…) do statement we have to precede the variable name with the keyword global.

It’s helpful to keep in mind that for, while, try, and let blocks also default to local scopes, but they do inherit from a parent scope like the one created by the open(…) do statement. Therefore, if we initially define the variable header_row right beneath the open(…) do statement, then the for loop will inherit the variable from the parent scope and we won’t need to precede the variable name with the keyword global. That is, the following alternative syntax would work too:

open(input_file, "r") do in_file
    header_row = true
    # Use a for loop to process the rows in the input file one-by-one
    for row in eachline(in_file)
        if header_row == true
            print(row)
            write(out_file, row)
            header_row = false

Like base Python without the csv module, Julia reads each row from the file in as a string, so we use the strip function to remove the trailing newline character, then the split function to split the string on commas and convert it into an array, and finally we map the float function to each of the elements in the array to convert all of the values to floating-point numbers.

The println function adds a newline character on the end of the line before printing the line to the screen whereas the print function does not, it prints the line as-is.

The first two row filtering sections use the join function and the string concatenation symbol, *, to create the row of output that will be printed to the screen and written to the output file. In this case, the join function places commas between each of the elements in the array and converts it to a string. Then we add a newline character to the end of the string with the * concatenation symbol.

We test whether the value in the quality column (in Julia, the first array index is 1), is in the set of interest with the in function. Similarly, we test whether the pattern appears in the row using the ismatch function. You’ll notice that we leave the row as a string, i.e. we don’t convert it into an array, to use the ismatch function since ismatch looks for the pattern in a string, not an array.

Now run the following two commands to make the script executable and to run the script:

chmod +x filter_rows.jl
./filter_rows.jl winequality-red.csv output/output_Julia.csv

When you run these commands you’ll see the following printed to your Terminal screen. In addition, the header row and the set of rows matching the pattern in the final filtering section have been written to a CSV file in the output folder.

Base Julia

Julia packages: DataFrames and DataFramesMeta

Now that we know how to filter for specific rows in base Julia, let’s discuss how to filter for rows with DataFrames, a popular package for managing tabular data in Julia. The following script illustrates how to do so. Copy and paste this code into a text file and then save the file as filter_rows_data_frames.jl

#!/usr/bin/env julia
using DataFrames
using DataFramesMeta

input_file = ARGS[1]
output_file = ARGS[2]

data_frame = readtable(input_file, separator = ',')

# Row Value Meets Specific Condition
data_frame_value_meets_condition = data_frame[data_frame[:quality] .> 7, :]
#data_frame_value_meets_condition = data_frame[(data_frame[:quality] .== 7) | (data_frame[:quality] .== 8), :]
#println(data_frame_value_meets_condition)

# Row Value In Set of Interest
set_of_interest = Set(7, 8)
data_frame_value_in_set = data_frame[findin(data_frame[:quality], set_of_interest), :]
#println(data_frame_value_in_set)

# Row Value Matches Specific Pattern
pattern = r"8"
data_frame_value_matches_pattern = data_frame[[ismatch(pattern, string(value)) for value in data_frame[:quality]], :]
#data_frame_value_matches_pattern = @where(data_frame, [ismatch(pattern, string(value)) for value in :quality])
println(data_frame_value_matches_pattern)

writetable(output_file, data_frame_value_matches_pattern)

The first filtering section demonstrates how you can use one condition or multiple conditions to filter for specific rows. In Julia, you precede the comparison operator with a period, for example .==, to do element-wise comparisons. To use multiple conditions you wrap each one in parentheses and combine them with ANDs, &, or ORs, |. The colon has the same meaning that it does in R and Python. In this case, we’re using it to retain all of the columns.

We use the findin function to determine which rows have the value 7 or 8 in the quality column in order to retain these rows.

The third filtering section demonstrates two slightly different ways to filter for rows based on a pattern. Both methods use row indexing, the ismatch function, and array comprehensions to look for the pattern in each of the elements in the quality column/array. The only real difference between the two methods is that in the first method we have to specify data_frame[…] twice, whereas the second method uses the @where meta-command from the DataFramesMeta package to enable us to refer to the data_frame once and then refer to the quality column with :quality instead of the slightly more cumbersome data_frame[quality].

Now run the following two commands to make the script executable and to run the script:

chmod +x filter_rows_data_frames.jl
./filter_rows_data_frames.jl winequality-red.csv output/output_Julia_DataFrames.csv

When you run these commands you’ll see similar output as you saw with base Julia printed to your Terminal screen, although it will be formatted differently. In addition, the header row and the set of rows matching the pattern in the final filtering section have been written to a CSV file in the output folder.

As you can see, when it comes to filtering for specific rows, the differences in syntax between Python and Julia are very slight. For example, Python’s “if value in set_of_interest” statements are “in(value, set_of_interest)” statements in Julia, and Python’s pattern matching “pattern.search()” statements are “ismatch()” statements in Julia. On the other hand, one difference to keep in mind is that for loops in Julia default to local scope so if you’ve defined a variable outside of a for loop and you need to use it inside the for loop, then you need to precede the variable name with the word global.

Now that we know how to read and write data in a CSV-formatted input file and filter for specific rows with R, Python, and Julia, the next step is to figure out how to filter for specific columns in these languages. Then we can move on to processing lots of files in a directory and also dealing with Excel files. We’ll cover these topics in future posts.

I’d like to thank the Julia users group, especially Nils Gudat and David Gold, for helping me figure out how to use the findin and ismatch functions to filter for specific rows while using the DataFrames package.

All Scripts and Output Files

To Read or Not to Read? Hopefully the Former!

It has been far too long since I posted to this blog.  It’s time to let you know what I’ve been working on over the past few months.  I’ve been writing a book on a topic that is near and dear to my heart.

The book is titled Multi-objective Decision Analysis: Managing Trade-offs and Uncertainty.  It is an applied, concise book that explains how to conduct multi-objective decision analyses using spreadsheets.

The book is scheduled to be published by Business Expert Press in 2013.  For a little more information about my forthcoming book, please read the abstract shown below:

“Whether managing strategy, operations, or products, making the best decision in a complex uncertain business environment is challenging.  One of the major difficulties facing decision makers is that they often have multiple, competing objectives, which means trade-offs will need to be made.  To further complicate matters, uncertainty in the business environment makes it hard to explicitly understand how different objectives will impact potential outcomes.  Fortunately, these problems can be solved with a structured framework for multi-objective decision analysis that measures trade-offs among objectives and incorporates uncertainties and risk preferences.

This book is designed to help decision makers by providing such an analysis framework implemented as a simple spreadsheet tool.  This framework helps structure the decision making process by identifying what information is needed in order to make the decision, defining how that information should be combined to make the decision and, finally, providing quantifiable evidence to clearly communicate and justify the final decision.

The process itself involves minimal overhead and is perfect for busy professionals who need a simple, structured process for making, tracking, and communicating decisions.  With this process, decision making is made more efficient by focusing only on information and factors that are well-defined, measureable, and relevant to the decision at hand.  The clear characterization of the decision required by the framework ensures that a decision can be traced and is consistent with the intended objectives and organizational values.  Using this structured decision-making framework, anyone can effectively and consistently make better decisions to gain a competitive and strategic advantage.”

Look for my forthcoming book, Multi-objective Decision Analysis, on the bookshelves in 2013!

Source: favim.com

Enlightened Management: Checking Your Urge to Intervene at the Door

Managing others can be challenging for a whole host of reasons, including, among others, breakdowns in communication, lapses in judgment, emotions, politics, and differences in perception, personality, and expectations.  If you manage people who are supposed to achieve specific performance targets within a given timeframe, you face the additional challenges of monitoring each person’s performance, evaluating performance against the target, and then letting them know whether their performance meets, exceeds, or is below the performance target.

A common example is a sales target set for members of a sales staff for a specific period of time, let’s say one month.  Inevitably, after reviewing everyone’s performance at the end of the month there is a sales person whose performance is far below the performance target.  As the person’s manager, you speak with the person and sure enough, as you would expect, in the next time period the person’s performance improves.  Is it appropriate for you to infer that your intervention at the end of the first time period caused the improved performance in the subsequent time period?  Should you praise high performers and reprimand or coach low performers after each time period?

The answer to both of these questions is – not necessarily.  Let’s explore the situation a bit more carefully to understand why.  In general, workers will strive to meet a specified performance target; however, we live in a world of uncertainty where factors that are out of our control can affect our performance.  Under these circumstances, it is very unlikely that in each time period workers’ performance levels will exactly match the performance target.  Rather, performance levels will fluctuate around the target – sometimes performance will be greater than the target, sometimes it will be less than the target, but on average performance will be meeting the target.  In this situation, it is highly likely that sub-par performance in one time period will be followed by improved performance in the next time period even if you do not intervene.

I am not saying monitoring performance levels against a target is ineffective or that communicating managerial expectations is inappropriate.  Rather, I am saying that, in the midst of performance levels that fluctuate around a specific target, the average (i.e. arithmetic mean) of the worker’s historical performance levels is a reliable prediction for future performance.  If the average of the worker’s historical performance levels meets the target it is likely to remain there regardless of whether you intervene after each time period.  For all of the reasons stated above, managing others is hard enough without over-reacting to short-term fluctuations in performance.  So relax, and keep your focus on long-term trends.  You’ll free up some time for yourself and find yourself making better decisions.